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Numerical Results for Waring's Problem in GF[ q, x] 

By William A. Webb 

Abstract. Let p be a prime and let K and Ai denote polynomials whose coefficients are 
elements of the finite field with p elements. Problems concerning the expression of an 
arbitrary polynomial K as sums of a small number of squares or cubes of polynomials Ai 
are discussed. In the problems treated the degrees of the Ai are restricted to be as small as 
possible. In particular, it is shown that at least five cubes are necessary and that three squares 
seem to suffice in all but one special case. 

1. Introduction. Let p be a prime, q a power of p, and let GF[q, x] denote the 
ring of polynomials having coefficients in the finite field of q elements. Waring's 
problem in GF[q, x] is essentially the problem of solving the equation 

K = A k + A2k + + Ask 

for all K E GF[q, x], where A, E GF[q, x] and s is fixed, depending only on k. 
The general Waring's problem has been considered by Paley [8] and Webb [9], 

while the case of sums of squares (k = 2) has been extensively studied by Carlitz 
([1], [2], [3], [4]), Cohen ([5], [6]) and Leahey [7]. 

There are actually many possible versions of Waring's problem, depending on 
the conditions placed on the A,. The most important condition appears to be whether 
we restrict the degree of the A,. The version in which the degree of Ak is required to 
be at most the degree of K (or as close as possible) in many ways is the most natural 
(see [9]), the most difficult, and the most interesting computationally. Although there 
are still many possible versions of Waring's problem, we will consider the following 
two equations. 

(1.1) K = Al + A2 + .. + As: deg Ai - [-e -k ] +1. 

The condition on the degree of the A, is merely that they are as small as possible. 

(1.2) K = 1A k + * + 
b,Ak: 

deg K = nk, deg A, = n, , C- GF(q), 3, 0 O; 

also the Ai must be primary (having leading coefficient of 1) and Ej , = sgn K, 
where sgn K denotes the leading coefficient of K. The solution of (1.2) in general 
implies the solution of (1.1) by taking the 8, to be kth powers of GF(q). 

For a given k, it is known that the above equations are solvable for a fixed s, 
but it is not known what the smallest value of s is for which they are solvable. In 
this paper, we give some numerical results which suggest what the best value for 
sis, ifk = 2, or 3. 
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There is the further complication that we could ask for the smallest value of s, 
for which (1.1) and (1.2) are solvable for all K and all q = p', or we insist that (1.1) 
and (1.2) be solvable only for K of sufficiently large degree, and/or for p sufficiently 
large. It should be noted that, if k = 2, it is clearly necessary to assume p - 2, and, 
if k = 3, that p > 3. Although the corresponding questions concerning Waring's 
problem for the rational integers yield very different values for s, it appears quite 
possible that over GF[q, x] the values of s may be equal most of the time. Hence, we 
define the following numbers. 

g(k) = minimum s for which (1.1) is solvable 
for all K and all p > k. 

g(k) = minimum s for which (1.2) is solvable 
for all K, all choices of the bi, and all p > k. 

Generally, we should expect the largest necessary value of s will occur when 
degree K is small, and q is small. Thus, we consider only q = p where p will be a 
small prime, and degree K < k, or deg K < 2k. 

2. Sums of Squares. We first prove a theorem which shows that both g(2) 
and g(2) are at least 3. Our result is an immediate consequence of the following 
theorem of Cohen [5, Theorem 10]. 

THEOREM 2.1. If deg K = 2n, deg A < n, deg B _ n, then the number of solutions 
of K = A2 + B2 is 

(2.1) (q - 1) I' 1 if p 1 (mod 4), 
DI K; deg D=n 

2n 

(2.2) (q + 1) Z(17 ,' 1 if p- 3 (mod 4), 
i-O DDIK; degD=i 

where ,' denotes a sum over primary polynomials. 
THEOREM 2.2. If deg K = 2n, deg A < n, deg B < n, then K = A2 + B2 has a 

solution if and only if 
(i) K is divisible by some polynomial of degree n-if p -1 (mod 4). 
(ii) Every irreducible polynomial of odd degree which divides K appears in the 

factorization of K to an even power-if p 3 (mod 4). 
Proof. (i) follows trivially from (2.1). 
(ii) follows from (2.2) since K = aP;' ... par implies 

2n ai \ai 

E (-1I); ' 1 E 1) H E (- l)i 
j=0 DIDK; degD=i Ps IK; deg Pi even j=O P/ I K; deg Ps odd i=O 

Note that if p 3 (mod 4) the conditions on the solvability of K = A2 + B2 are 
the same even if no restriction is placed on the degrees of A and B, while if 
p 1 (mod 4) the results are different [7]. 

We also note that Theorem 13 of [5] implies both (1.1) and (1.2) have solutions 
for k = 2 if s = 4. Thus, 3 < g(2) < 4 and 3 ? g(2) < 4. 

In what follows in this section, when we refer to Eqs. (1.1) and (1.2), we will 
assume k = 2 and s = 3. We conjecture that both equations are solvable, with one 
exception. 
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The exception is that (1.1) is in general not solvable in GF[3, x]. This exception 
is not too surprising since the sum of 3 nonzero squares in GF(3) must be zero making 
this a rather special case. The following result was established by generating all 
possible sums of squares of 3 polynomials of degree < 2. 

THEOREM 2.3. There are exactly eight polynomials K of degree _ 4, for which 
(1.1) is unsolvable in GF[3, x], k = 2, s = 3; namely: X3 + 2x + 1, 2x3 + x + 1, 
x4 + X + 1, X4 + 2x + 1, X4 + X3 + 1, X4 + 2X3 + 1, X4 + 2X3 + X 

and X4 + X3 + 2x. 
It would be interesting to know whether there are polynomials K of arbitrarily 

high degree for which (1.1) is unsolvable in GF[3, x], or if (1.1) is always solvable 
if deg K is sufficiently large. 

It appears that forp $ 3, (1.1) is solvable in GF[p, x] for all K, and that the number 
of solutions grows quite rapidly. For example, (1.1) is solvable for all K such that 
degree K ? 2 in both GF[5, x] and GF[7, x]. In GF[7, x], every such K is expressible 
in the form (1.1) in at least 42 ways (counting different orderings). 

It also appears that (1.2) is always solvable. In the case where all i = 1, we have 
THEOREM 2.4. If all &i = 1, then Eq. (1.2) is solvable for all K of degree 2 having 

leading coefficient 3 in GF[p, x] for p < 83, and for all K of degree 4 having leading 
coefficient 3 in GF[5, x] and GF[7, x], k = 2, s = 3. 

The case p = 3 is of course not included in the above theorem since 1 + 1 + 1 = 0 
in GF(3), and the leading coefficient of K must be nonzero. Although the average 
number of solutions of (1.2) grows larger as p increases, there are polynomials for 
which (1.2) has an essentially unique solution (not counting order). Some of these 
polynomials occur when p is large, for example in GF[83, x], although none occur 
in GF[79, x] or GF[73, x]. 

Cases other than all &i = 1 have also been considered and, in all examples so 
far, (1.2) has been solvable for all K, with s = 3. 

3. Sums of Cubes. Although the results in [9] imply that both (1.1) and (1.2) 
are solvable for every k and for a fixed s depending only on k, the bounds obtained 
for s are clearly far from the best possible. 

In this section, we will treat sums of cubes, and so, from now on, we assume k = 3 
in (1.1) and (1.2). The amount of computation necessary to obtain a reasonable 
amount of numerical evidence for the cases k > 4 appears to be excessive. 

THEOREM 3.1. There are 336 polynomials Kof degree 3for which (1.1) is not solvable 
with k = 3, s = 4 in GF[7, x]. However, (1.1) is solvable for all K of degree 3 with 
k = 3, s = 4 in GF[5, x]. 

Theorem 3.1 implies that g(3) > 5, and it would seem reasonable to conjecture 
that g(3) may equal 5, although the evidence for this is still scanty. 

THEOREM 3.2. There are 14 polynomials of the form K = 6x3 + ax2 + bx + c 
for which (1.2) is unsolvable with k = 3, s = 6, and all i = 1 in GF[7, x]. However, 
(1.2) is solvable for all such K, k = 3, s = 6, all ai= 1 in GF[p, x] for p = 5, 11, 13. 

Theorem 3.2 implies that g(3) > 7 and it appears likely that g(3) = 7. Cases 
other than all bi = 1 have been considered, and, in these examples, (1.2) was solvable 
with s = 6. It is possible that (1.2) may be solvable with s = 6 with only finitely 
many exceptions. 
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